1. (5 pts) Solve the equation:

$$
\frac{2 x+1}{3 x-2}=\frac{x+5}{3 x-1}
$$

(i) Cross multiply:

$$
\frac{2 x+1}{3 x-2}=\frac{x+5}{3 x-1} \Longrightarrow(2 x+1)(3 x-1)=(x+5)(3 x-2)
$$

(ii) Expand both sides of the equation:

$$
(2 x+1)(3 x-1)=(x+5)(3 x-2) \Longrightarrow 6 x^{2}+x-1=3 x^{2}+13 x-10
$$

(iii) Collect terms (on the left):

$$
6 x^{2}+x-1=3 x^{2}+13 x-10 \Longrightarrow 3 x^{2}-12 x+9=0
$$

(iv) Solve quadratic equation by factoring...

$$
3 x^{2}-12 x+9=0 \Longrightarrow 3\left(x^{2}-4 x+3\right)=0 \Longrightarrow 3(x-1)(x-3)=0 \Longrightarrow x_{1}=1 \text { and } x_{2}=3
$$

... or using the quadratic formula:

$$
3 x^{2}-12 x+9=0 \Longrightarrow x=\frac{12 \pm \sqrt{144-108}}{6}=\frac{12 \pm \sqrt{36}}{6} \Longrightarrow x_{1}=\frac{12-6}{6}=1 \text { and } x_{2}=\frac{12+6}{6}=3
$$

2. (5 pts) Solve the pair of equations:

$$
\begin{aligned}
& 5 x+2 y=3 \\
& 7 x+3 y=11
\end{aligned}
$$

(i) Multiply first equation by 3 and second equation by 2 :

$$
\left.\begin{array}{l}
5 x+2 y=3 \\
7 x+3 y=11
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
15 x+6 y=9 \\
14 x+6 y=22
\end{array}\right.
$$

(ii) Subtract second equation from first equation:

$$
\begin{aligned}
(15 x+6 y & =9) \\
-(14 x+6 y & =22) \\
\hline x+0 \cdot y & =-13
\end{aligned}
$$

(iii) Substitute $x=-13$ into (original) first equation:

$$
5(-13)+2 y=3 \Longrightarrow 2 y=3+65 \Longrightarrow y=34 .
$$

(iv) Solution: $(x, y)=(-13,34)$.
3. (5 pts) $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{(x+2)(x-1)}{(x+1)(x-1)}=\frac{\lim _{x \rightarrow 1}(x+2)}{\lim _{x \rightarrow 1}(x+1)}=\frac{3}{2}$
4. (5 pts) $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{\not x^{2}+2 x h+h^{2}-\not x^{22}}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h)}{\nless}=\lim _{h \rightarrow 0} 2 x+h=2 x$

