1. Use the differentiation formulæ to find the derivatives of the functions below.
(a) (2 pts) $f(x)=3 \sqrt{x}+\frac{1}{x^{2}} ; \quad f^{\prime}(x)=\frac{d}{d x}\left(3 x^{1 / 2}+x^{-2}\right)=3 \cdot\left(\frac{1}{2} x^{-1 / 2}\right)+(-2) x^{-3}=\frac{3}{2} x^{-1 / 2}-2 x^{-3}$.
(b) $(2 \mathrm{pts}) v=\left(4 t^{2}+3\right)\left(t^{3}+2 t+1\right) ; \quad \frac{d v}{d t}=\left(4 t^{2}+3\right)^{\prime}\left(t^{3}+2 t+1\right)+\left(4 t^{2}+3\right)\left(t^{3}+2 t+1\right)^{\prime}$ $=8 t\left(t^{3}+2 t+1\right)+\left(4 t^{2}+3\right)\left(3 t^{2}+2\right) \quad\left(=20 t^{4}+33 t^{2}+8 t+6\right)$ using the product rule...
... or
$\frac{d v}{d t}=\frac{d}{d t}\left(4 t^{5}+11 t^{3}+4 t^{2}+6 t+3\right)$
$=20 t^{4}+33 t^{2}+8 t+6$
not using the product rule.
(c) $(2 \mathrm{pts}) y=\frac{2 x^{2}+3}{5 x+1} ; \quad y^{\prime}=\frac{\left(2 x^{2}+3\right)^{\prime}(5 x+1)-\left(2 x^{2}+3\right)(5 x+1)^{\prime}}{(5 x+1)^{2}}=\frac{4 x(5 x+1)-5\left(2 x^{2}+3\right)}{(5 x+1)^{2}}$

$$
\left(=\frac{10 x^{2}+4 x-25}{(5 x+1)^{2}}\right)
$$

2. (7 pts) Use the definition of the derivative to find the slope of the curve $y=\frac{3}{x}$ at the point $x_{0}=2$.

$$
\left.\frac{d y}{d x}\right|_{x=2}=\lim _{h \rightarrow 0} \frac{\frac{3}{2+h}-\frac{3}{2}}{h}=\lim _{h \rightarrow 0} \frac{\frac{3 \cdot 2-3(2+h)}{2(2+h)}}{h}=\lim _{h \rightarrow 0} \frac{-3 h}{2 \not\langle(2+h)}=\lim _{h \rightarrow 0} \frac{-3}{2(2+h)}=-\frac{3}{4} .
$$

3. (7 pts) A firm's marginal cost function is given by

$$
\frac{d c}{d q}=\sqrt{3 q^{2}+16}
$$

where cost (c) is measured in $\$ 1000$ s and output (q) is measured in 100 s of units. By approximately how much will the firm's cost increase if its output increases from 400 units to 430 units?

When output is 400 units, $q=4$, and increasing output to 430 units means that $\Delta q=0.3$ (because q is measured in 100 s of units). Now we use linear approximation:

$$
\left.\Delta c \approx \frac{d c}{d q}\right|_{q=4} \cdot \Delta q=\left.\sqrt{3 \cdot q^{2}+16}\right|_{q=4} \cdot(0.3)=\sqrt{64} \cdot(0.3)=2.4
$$

which means that cost will increase by about $\$ 2400.00$ (because c is measured in $\$ 1000 \mathrm{~s}$).

