The Chain Rule:

$$
\frac{d}{d x}\left(f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)\right.
$$

Example 1. Find the derivative of $y=\sqrt{x^{3}+x+2}=f(g(x))$, where $f(u)=\sqrt{u}=u^{1 / 2}$ and $g(x)=x^{3}+x+2$, so...

$$
\frac{d}{d x} \sqrt{x^{3}+x+2}=\frac{d}{d x}\left(x^{3}+x+2\right)^{1 / 2}=\overbrace{\frac{1}{2}\left(x^{3}+x+2\right)^{-1 / 2}}^{f^{\prime}(g(x))} \underbrace{\left(3 x^{2}+1\right)}_{g^{\prime}(x)}
$$

(*) The chain rule can also be expressed as follows. If $y=f(u)$ and $u=g(x)$, then $y=f(g(x))$ and

$$
\frac{d y}{d x}=\overbrace{\frac{d y}{d u}}^{f^{\prime}(g(x))} \cdot \overbrace{\frac{d u}{d x}}^{g^{\prime}(x)}
$$

Explanation: With $y=f(u)$ and $u=g(x)$, linear approximation says that if $\Delta x \approx 0$, then

$$
\begin{equation*}
\Delta u=g(x+\Delta x)-g(x) \approx g^{\prime}(x) \Delta x \tag{1}
\end{equation*}
$$

Likewise, if $\Delta u \approx 0$, then

$$
\begin{equation*}
\Delta y=f(u+\Delta u)-f(u) \approx f^{\prime}(u) \Delta u \tag{2}
\end{equation*}
$$

Now, if Δx is close to 0 , then so is Δu (because $g^{\prime}(x)$ is fixed), so if $\Delta x \approx 0$, then using both approximations (1) and (2) gives

$$
\Delta y \approx f^{\prime}(u) \Delta u \approx f^{\prime}(u) \overbrace{g^{\prime}(x) \Delta x}^{\approx \Delta u}=f^{\prime}(g(x)) g^{\prime}(x) \Delta x,
$$

SO

$$
\frac{\Delta y}{\Delta x} \approx \frac{f^{\prime}(g(x)) g^{\prime}(x) \Delta x}{\Delta x}=f^{\prime}(g(x)) g^{\prime}(x) .
$$

These approximations all becomes more and more accurate as $\Delta x \rightarrow 0$, and therefore

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=f^{\prime}(g(x)) g^{\prime}(x) .
$$

Example 4. Find the point(s) on the graph of $h(x)=\left(x^{2}-3 x-4\right)^{3}$ where the tangent line is horizontal.
$\left.{ }^{*}\right)$ We need to find the point(s) where $h^{\prime}(x)=0$, which means that we first have to differentiate $h(x)$.
${ }^{*}$) Differentiation: use the chain rule on $h(x)=f(g(x))$,
with $f(u)=u^{3}$ and $g(x)=x^{2}-3 x-4$:

$$
h^{\prime}(x)=\underbrace{3(\overbrace{x^{2}-3 x-4}^{u}}_{d f / d u})^{2}(\overbrace{2 x-3}^{d g / d x})
$$

${ }^{(*)}$ Recall: A product $A B=0$ if and only if $A=0$ or $B=0$, so

$$
h^{\prime}(x)=0 \Longleftrightarrow x^{2}-3 x-4=0 \text { or } 2 x-3=0
$$

and $x^{2}-3 x-4=(x-4)(x+1)$, so $h^{\prime}(x)=0$ when $x=-1, x=3 / 2$ and $x=4$.

Figure 1: The graph of $y=\left(x^{2}-3 x-4\right)^{3}$.

Differentiating without the chain rule...

$$
\begin{aligned}
h(x)=\left(x^{2}-3 x-4\right)^{3} & =\left(x^{2}-3 x-4\right)^{2}\left(x^{2}-3 x-4\right) \\
& =\left(x^{4}-6 x^{3}+x^{2}+24 x+16\right)\left(x^{2}-3 x-4\right) \\
& =x^{6}-9 x^{5}+15 x^{4}+45 x^{3}-60 x^{2}-144 x-64
\end{aligned}
$$

So

$$
h^{\prime}(x)=6 x^{5}-45 x^{4}+60 x^{3}+135 x^{2}-120 x-144
$$

Now all we have to do is to solve the equation

$$
6 x^{5}-45 x^{4}+60 x^{3}+135 x^{2}-120 x-144=0 \ldots
$$

Observation: Using the chain rule in this example has two advantages:
(*) No messy arithmetic.
(*) The chain rule gives $h^{\prime}(x)$ in a (partially) factored form, which makes solving the equation $h^{\prime}(x)=0$ is much easier.

Example 5. Find the equation of the tangent line to the graph

$$
y=\frac{2}{\sqrt[3]{x^{2}+4}}
$$

at the point $(2,1)$.
We can use the quotient rule combined with the chain rule to find the derivative $d y / d x$, or we can just use the chain rule and the observation that

$$
\begin{gathered}
y=\frac{2}{\sqrt[3]{x^{2}+4}}=2\left(x^{2}+4\right)^{-1 / 3} \\
\Longrightarrow \frac{d y}{d x}=2 \cdot\left(-\frac{1}{3}\right)\left(x^{2}+4\right)^{-4 / 3} \cdot(2 x)=-\frac{4 x}{3}\left(x^{2}+4\right)^{-4 / 3} \\
\left.\Longrightarrow \frac{d y}{d x}\right|_{x=2}=-\frac{8}{3} \cdot 8^{-4 / 3}=-\frac{1}{6} .
\end{gathered}
$$

Now we use the point-slope formula to find the equation of the tangent line:

$$
y-1=-\frac{1}{6}(x-2) \Longrightarrow y=1-\frac{1}{6}(x-2) \quad\left(\text { or } y=\frac{4}{3}-\frac{x}{6}\right)
$$

Figure 2: The graphs of $y=2\left(x^{2}+4\right)^{-1 / 3}$ and the tangent line at $(2,1)$.

Observation: $f(x) / g(x)=f(x) g(x)^{-1}$, so...

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right) & =\frac{d}{d x}\left(f(x) g(x)^{-1}\right) \\
& =f^{\prime}(x) g(x)^{-1}+f(x) \frac{d}{d x}\left(g(x)^{-1}\right) \\
& =f^{\prime}(x) g(x)^{-1}+f(x)\left((-1) g(x)^{-2} g^{\prime}(x)\right) \\
& =\frac{f^{\prime}(x)}{g(x)}-\frac{f(x) g^{\prime}(x)}{g(x)^{2}}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
\end{aligned}
$$

I.e., the quotient rule follows from combining the product rule and chain rule.

Marginal revenue product.

Suppose that a firm's revenue function is $r=f(q)$ (where q is output), and their production function is $q=g(l)$ (where l is labor input). In this case, the firm's revenue depends on its labor input

$$
r=f(g(l))
$$

The derivative $d r / d l$ is called the firm's marginal revenue product.
(*) By the chain rule

$$
\frac{d r}{d l}=\frac{d r}{d q} \cdot \frac{d q}{d l}
$$

i.e.,
marginal revenue product $=($ marginal revenue $) \times($ marginal product $)$.

Example: The demand equation for a firm's product is

$$
p=100-0.8 q
$$

and the firm's production function is

$$
q=5 \sqrt{4 l-15}
$$

where labor input l is measured in 40 -hour work-weeks.
$\left(^{*}\right)$ Find the firm's marginal revenue product when $l=10$.

1. $r=p q=100 q-0.8 q^{2} \quad \Longrightarrow \quad \frac{d r}{d q}=100-1.6 q$
2. $\frac{d q}{d l}=\frac{d}{d l}\left(5(4 l-15)^{1 / 2}\right)=5 \cdot \frac{1}{2}(4 l-15)^{-1 / 2} \cdot 4=10(4 l-15)^{-1 / 2}$
3. $q(10)=5 \sqrt{40-15}=25$.
4. $\left.\frac{d r}{d l}\right|_{l=10}=\left.\frac{d r}{d q}\right|_{q=25} \times\left.\frac{d q}{d l}\right|_{l=10}=\overbrace{(100-1.6 \cdot 25)}^{60} \times \overbrace{\left(10 \cdot 25^{-1 / 2}\right)}^{2}=120$
