Question: How do we find the slope of the graph $y=f(x)$ at a point $\left(x_{0}, f\left(x_{0}\right)\right)$ on the graph?

Step 1. Find an approximation to the slope.
Problem: we need two points to calculate a slope but we have only one, $\left(x_{0}, f\left(x_{0}\right)\right)$.

Solution: choose another point on the graph, say ($x_{1}, f\left(x_{1}\right)$), and calculate the slope of the (secant) line that connects these two points:

$$
m_{1}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

The slope m_{1} is an approximation of the (unknown) slope that we seek.

Step 2. Find a (repeatable) way to improve the approximation.
Intuition: If we choose a point x_{2} that is closer to x_{0} than x_{1}, and find the slope

$$
m_{2}=\frac{f\left(x_{2}\right)-f\left(x_{0}\right)}{x_{2}-x_{0}}
$$

of the line connecting $\left(x_{0}, f\left(x_{0}\right)\right)$ to $\left(x_{2}, f\left(x_{2}\right)\right)$, then m_{2} will be a better approximation to the slope $\boldsymbol{a t}\left(x_{0}, f\left(x_{0}\right)\right)$ than m_{1}.

Step 3 and beyond: Repeat step 2 and take a limit.
Intuition: If we continue to choose points on the graph that are closer and closer to $\left(x_{0}, f\left(x_{0}\right)\right)$ and compute the slopes of the secant lines connecting these points to $\left(x_{0}, f\left(x_{0}\right)\right)$, then these slopes should approach the slope $\boldsymbol{a t}\left(x_{0}, f\left(x_{0}\right)\right)$, if it exists.

Definition: The slope of the graph $y=f\left(x_{0}\right)$ at the point $\left(x_{0}, f\left(x_{0}\right)\right)$ is given by

$$
m_{0}=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

if the limit exists. If the limit does not exist, then the graph does not have a slope at that point.

Definition: If the graph $y=f(x)$ has a slope m_{0} at $\left(x_{0}, f\left(x_{0}\right)\right)$, then the straight line that passes through $\left(x_{0}, f\left(x_{0}\right)\right)$ with slope m_{0} is called the tangent line to the graph at that point.

Example 1: Find the slope of the graph $y=x^{2}$ at the point $(1,1)$, and find the equation of the tangent line to $y=x^{2}$ at $(1,1)$.

$$
m=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1}=\lim _{x \rightarrow 1} x+1=2
$$

The tangent line we seek passes through the point $(1,1)$ with slope $m=2$... Use the point-slope formula:

$$
y-1=2(x-1) \Longrightarrow y=2 x-1
$$

Terminology and Notation:

The slope of $y=f(x)$ at $\left(x_{0}, f\left(x_{0}\right)\right)$ is called the derivative of $y=f(x)$ at x_{0}, and denoted by $f^{\prime}\left(x_{0}\right)$ or $y^{\prime}\left(x_{0}\right)$. I.e.,

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}},
$$

(if the limit exists).
Using this notation, the equation of the tangent line to $y=f(x)$ at $\left(x_{0}, f\left(x_{0}\right)\right)$ is given by

$$
y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad \text { or } \quad y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) .
$$

Modifying the limit. If we write $x=x_{0}+h$, then $x-x_{0}=h$, and $x \rightarrow x_{0}$ is the same as $h \rightarrow 0$. This means that we can write the definition of the derivative as

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} .
$$

Example 1, revisited: The derivative of $y=x^{2}$ at $x=1$ is

$$
\begin{aligned}
y^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{(1+h)^{2}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not \not+2 h+h^{2}-\not \chi}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not h(2+h)}{\not h}=\lim _{h \rightarrow 0} 2+h=2 .
\end{aligned}
$$

Example 2: Find the derivative of $y=x^{2}$ at the points $x=2$ and $x=-1$.

$$
\begin{aligned}
y^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{A+4 h+h^{2}-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not h(4+h)}{\not h}=\lim _{h \rightarrow 0} 4+h=4 .
\end{aligned}
$$

and

$$
\begin{aligned}
y^{\prime}(-1) & =\lim _{h \rightarrow 0} \frac{(-1+h)^{2}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not \perp-2 h+h^{2}-\not 又}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not h(-2+h)}{\not h}=\lim _{h \rightarrow 0}-2+h=-2 .
\end{aligned}
$$

Definition: The derivative of the function $y=f(x)$ is the function $f^{\prime}(x)$ defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

at every point x where the limit exists.
Terminology: If $f^{\prime}(x)$ is defined at a point x_{0}, then the function $f(x)$ is said to be differentiable at x_{0}. If $f^{\prime}(x)$ exists for every point x in some interval $I=(a, b)$, then $f(x)$ is differentiable in I.
Example 3: Find the derivative of $f(x)=x^{2}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h h}=\lim _{h \rightarrow 0} 2 x+h=2 x .
\end{aligned}
$$

This limit exists for all x, so $f(x)=x^{2}$ is differentiable on the entire real line.

