Average elasticity: The average elasticity of one variable with respect to another is the ratio of their respective percentage changes.
Example: If income increases by 5% over a certain period and as result, consumption increases by 4.2%, then the average income-elasticity of consumption is

$$
E_{C / I}=\frac{\% \Delta C}{\% \Delta I}=\frac{4.2 \%}{5 \%}=0.84 .
$$

Definition: If $y=f(x)$, then the average elasticity of y with respect to x (also called the x-elasticity of y) over the interval $(x, x+\Delta x)$ is

$$
E_{y / x}=\frac{\% \Delta y}{\% \Delta x}=\frac{\frac{\Delta y}{y} \cdot 100 \%}{\frac{\Delta x}{x} \cdot 100 \%}=\frac{\left(\frac{f(x+\Delta x)-f(x)}{f(x)}\right) \cdot 100 \%}{\frac{\Delta x}{x} \cdot 100 \%}
$$

Observation: The elasticity is units-free - a pure number-because the units for x cancel each other out in the denominator and the units for y cancel in the numerator.

The formula for elasticity simplifies:

$$
E_{y / x}=\frac{\% \Delta y}{\% \Delta x}=\frac{\frac{\Delta y}{y_{0}} \cdot 100 \%}{\frac{\Delta x}{x_{0}} \cdot 100 \%}=\frac{\Delta y}{\Delta x} \cdot \frac{x}{y}
$$

Example: Suppose that $y=0.3 x^{2}$. What is $E_{y / x}$ in the interval $(1,3) ?$ In this case $x=1$ and $\Delta x=3-1=2$, and $y=y(1)=0.3$ and $\Delta y=y(3)-y(1)=2.7-0.3=2.4$. Therefore

$$
E_{y / x}=\frac{2.4}{2} \cdot \frac{1}{0.3}=4
$$

By what percentage does y increase in this interval? Two ways to answer...

$$
\% \Delta y=\frac{\Delta y}{y} \cdot 100 \%=\frac{2.4}{0.3} \cdot 100 \%=800 \%
$$

or

$$
\% \Delta y=E_{y / x} \cdot \% \Delta x=4 \cdot \frac{\Delta x}{x} \cdot 100 \%=4 \cdot 200 \%=800 \%
$$

Definition: The point-elasticity of y with respect to x is the limit of the average elasticity as $\Delta x \rightarrow 0$. We denote point-elasticity by the Greek letter η (eta), so

$$
\eta_{y / x}=\lim _{\Delta x \rightarrow 0} E_{y / x}=\lim _{\Delta x \rightarrow 0}\left(\frac{\Delta y}{\Delta x} \cdot \frac{x}{y}\right)=\left(\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}\right) \cdot \frac{x}{y}=\frac{d y}{d x} \cdot \frac{x}{y} .
$$

Observation: As defined, if $y=f(x)$, then $\eta_{y / x}$ is also a function of x :

$$
\eta_{y / x}=\frac{d y}{d x} \cdot \frac{x}{y}=\frac{x f^{\prime}(x)}{f(x)}
$$

Example: Suppose that $y=2 x^{0.4}$, then

$$
\eta_{y / x}=0.8 x^{-0.6} \cdot \frac{x}{2 x^{0.4}}=\frac{0.8}{2} x^{-0.6} \cdot x^{0.6}=0.4
$$

In this case, elasticity is constant.

Price-elasticity of demand.

Example: If $q=300-1.2 p$ is the demand function for a firm, then

$$
\eta_{q / p}=(300-1.2 p)^{\prime} \cdot \frac{p}{300-1.2 p}=-1.2 \cdot \frac{p}{300-1.2 p}=-\frac{1.2 p}{300-1.2 p}
$$

is the price-elasticity of demand for the firm's product, expressed as a function of p (and in this case, elasticity is not constant).

What is the price-elasticity of demand when the price is $p=200$?

$$
\left.\eta_{q / p}\right|_{p=200}=-\frac{240}{300-240}=-4 .
$$

Question: Demand equations are often written in the form $p=f(q)$, with the demand q as the independent variable and the price p as the dependent variable.

How can we compute the price-elasticity of demand in such cases?

Answer: we return to the definition...

$$
\eta_{q / p}=\lim _{\Delta p \rightarrow 0} \frac{\Delta q}{\Delta p} \cdot \frac{p}{q}
$$

and make two observations...

1. If $\Delta p \rightarrow 0$ then $\Delta q \rightarrow 0$ and vice versa, and
2. $\frac{\Delta q}{\Delta p}=\frac{1}{\frac{\Delta p}{\Delta q}}$, so

$$
\lim _{\Delta p \rightarrow 0} \frac{\Delta q}{\Delta p}=\lim _{\Delta q \rightarrow 0} \frac{1}{\frac{\Delta p}{\Delta q}}=\frac{1}{\lim _{\Delta q \rightarrow 0} \frac{\Delta p}{\Delta q}}=\frac{1}{d p / d q}
$$

Plugging this back into the definition of elasticity gives

$$
\eta_{q / p}=\lim _{\Delta p \rightarrow 0} \frac{\Delta q}{\Delta p} \cdot \frac{p}{q}=\frac{1}{d p / d q} \cdot \frac{p}{q}=\frac{\frac{p}{q}}{\frac{d p}{d q}}
$$

Example: Suppose that the demand equation for a firm's product is given by $p=250-\frac{5}{6} q$. What is the price-elasticity of demand for the firm's product when $p=200$?

In this case we first find the elasticity as a function of $q \ldots$

$$
\eta_{q / p}=\frac{\frac{p}{q}}{\frac{d p}{d q}}=\frac{\frac{250-\frac{5}{6} q}{q}}{-\frac{5}{6}}=-\frac{300-q}{q}
$$

and then find q when $p=200 \ldots$

$$
p=200 \Longrightarrow 200=250-\frac{5}{6} q \Longrightarrow \frac{5}{6} q=50 \Longrightarrow q=60
$$

and then compute the elasticity

$$
\left.\eta_{q / p}\right|_{p=200}=\left.\eta_{q / p}\right|_{q=60}=-\frac{300-60}{60}=-4
$$

