Linear approximation for percentage change.

By definition,

$$
\eta_{y / x}=\lim _{\Delta x \rightarrow 0} \frac{\% \Delta y}{\% \Delta x}
$$

This means: if Δx is small, then

$$
\eta_{y / x} \approx \frac{\% \Delta y}{\% \Delta x}
$$

and therefore, if Δx is small, then

$$
\% \Delta y \approx \eta_{y / x} \cdot(\% \Delta x)
$$

Example: If $y=2 x^{0.4}$, then we saw that $\eta_{y / x}=0.4$ (for all x). What is the approximate percentage change in y if x increases from 10 to 10.3 ?

The percentage change in x is $\% \Delta x=(0.3 / 10) \cdot 100 \%=3 \%$,
and so $\% \Delta y \approx \eta_{y / x} \cdot \% \Delta x=0.4 \cdot 3 \%=1.2 \%$.
(The actual percentage change in y is $\frac{10.3^{0.4}-10^{0.4}}{10^{00.4}} \cdot 100 \% \approx 1.19 \%$)

Classifying price-elasticity of demand.

For a normal good, the price elasticity of demand (as defined here and in our textbook) is always negative, because

$$
\eta_{q / p}=\frac{d q}{d p} \cdot \frac{p}{q} \quad \text { or } \quad \eta_{q / p}=\frac{p / q}{d p / d q}
$$

and p and q are both positive, while both $d q / d p$ and $d p / d q$ are negative.
This makes sense because for a normal good, if the price rises then the demand will go down and vice versa, so if $\% \Delta p>0$, we expect $\% \Delta q<0$ and vice versa.

Definition:

- If $\eta_{q / p}<-1$ (so $\left.\left|\eta_{q / p}\right|>1\right)$, demand is said to be elastic.
- If $0>\eta_{q / p}>-1$ (so $\left|\eta_{q / p}\right|<1$), demand is said to be inelastic.
- If $\eta_{q / p}=-1$ (so $\left.\left|\eta_{q / p}\right|=1\right)$, demand is said to have unit elasticity (or to be unit-elastic).

When demand is elastic a 1% percentage change in price will result in larger than 1% change in demand (in the opposite direction).

When demand is inelastic, a 1% percentage change in price will result in smaller than 1% change in demand (again, in the opposite direction).

Intuition: If demand is elastic, then lowering the price of a good will result in higher revenue. And if the demand is inelastic, then raising the price of a good will result in higher revenue.

To verify this intuition, we study the relation between price-elasticity of demand and marginal revenue. Using the product rule, we see that

$$
\frac{d r}{d q}=\frac{d}{d q} \overbrace{(p q)}^{r}=\frac{d p}{d q} \cdot q+p \cdot \frac{d q}{d q}=p+q \frac{d p}{d q}=p\left(1+\frac{q}{p} \cdot \frac{d p}{d q}\right)
$$

But

$$
\frac{q}{p} \cdot \frac{d p}{d q}=\frac{1}{\frac{p}{q}} \cdot \frac{d p}{d q}=\frac{\frac{d p}{d q}}{\frac{p}{q}}=\frac{1}{\eta} \Longrightarrow \frac{d r}{d q}=p\left(1+\frac{1}{\eta}\right)
$$

Therefore:

1. If $\eta<-1$ (elastic demand), then $0>\frac{1}{\eta}>-1$ so $\frac{d r}{d q}=p\left(1+\frac{1}{\eta}\right)>0$.

In this case, lowering p will raise q and since $d r / d q>0$, this will increase revenue.
2. If $0>\eta>-1$ (inelastic demand), then $\frac{1}{\eta}<-1$ so $\frac{d r}{d q}=p\left(1+\frac{1}{\eta}\right)<0$. In this case, raising p will lower q and since $d r / d q<0$, this will increase revenue.

