Differentiating logarithm functions.

To differentiate $y=\ln x$, we must return to the definition...

$$
\frac{d}{d x}(\ln x)=\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln x}{h}
$$

and simplify, using algebraic properties of $\ln x \ldots$
$=\lim _{h \rightarrow 0} \frac{1}{h}(\ln (x+h)-\ln x)$
$=\lim _{h \rightarrow 0} \frac{1}{h} \ln \left(\frac{x+h}{x}\right)$
$=\lim _{h \rightarrow 0} \ln \left[\left(1+\frac{h}{x}\right)^{1 / h}\right]$
and use the continuity of $\ln x \ldots$
$=\ln \left[\lim _{h \rightarrow 0}\left(1+\frac{h}{x}\right)^{1 / h}\right]$
What next?

Remember the special limit

$$
\lim _{u \rightarrow 0}(1+u)^{1 / u}=e \ldots
$$

and substitute (rename)

$$
\frac{h}{x}=u \Longrightarrow h=u x \Longrightarrow \frac{1}{h}=\frac{1}{u x}=\frac{1}{u} \cdot \frac{1}{x} \ldots
$$

So

$$
\begin{aligned}
\lim _{h \rightarrow 0}\left(1+\frac{h}{x}\right)^{1 / h} & =\lim _{u \rightarrow 0}(1+u)^{\frac{1}{u} \cdot \frac{1}{x}} \\
& =\lim _{u \rightarrow 0}\left((1+u)^{\frac{1}{u}}\right)^{\frac{1}{x}} \\
= & \left(\lim _{u \rightarrow 0}(1+u)^{\frac{1}{u}}\right)^{\frac{1}{x}} \\
& \left(\text { because } f(x)=a^{1 / x}\right. \text { is continuous) } \\
= & e^{1 / x}
\end{aligned}
$$

Returning to $\frac{d}{d x}(\ln x) \ldots$

$$
\begin{aligned}
\frac{d}{d x}(\ln x) & =\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln x}{h} \\
& \vdots \\
& =\ln \left[\lim _{h \rightarrow 0}\left(1+\frac{h}{x}\right)^{1 / h}\right] \\
& =\ln \left(e^{1 / x}\right) \\
& =\frac{1}{x}
\end{aligned}
$$

I.e.,

$$
\frac{d}{d x}(\ln x)=\frac{1}{x}
$$

Example 1.

$$
\frac{d}{d x}\left(3 x^{2} \ln x\right)=6 x \ln x+3 x^{2} \cdot \frac{1}{x}=6 x \ln x+3 x
$$

(product rule)
Example 2.

$$
\frac{d}{d x} \ln \left(5 x^{2}+3 x+1\right)=\frac{1}{5 x^{2}+3 x+1} \cdot(10 x+3)=\frac{10 x+3}{5 x^{2}+3 x+1}
$$

(chain rule)
Example 3. Differentiate $y=\ln \left(5 x^{2}\right)$.
We can use the chain rule again:

$$
y^{\prime}=\frac{1}{5 x^{2}} \cdot 10 x=\frac{10 x}{5 x^{2}}=\frac{2}{x} \ldots
$$

or we can simplify and then differentiate:

$$
y=\ln \left(5 x^{2}\right)=\ln 5+\ln x^{2}=\ln 5+2 \ln x \Longrightarrow y^{\prime}=0+2 \cdot \frac{1}{x}=\frac{2}{x}
$$

Example 4. Find the equation of the tangent line to the graph

$$
y=\ln \left(\frac{x^{2}+x-1}{4 x-3}\right)
$$

at the point where $x=1$.
Point: $y(1)=\ln \left(\frac{1+1-1}{4-3}\right)=\ln 1=0$, so the point is $(1,0)$.
Slope: We need to compute $y^{\prime}(1)$, and once again, it is easier to simplify before we differentiate:

$$
\begin{gathered}
y=\ln \left(\frac{x^{2}+x-1}{4 x-3}\right)=\ln \left(x^{2}+x-1\right)-\ln (4 x-3) \\
\Longrightarrow y^{\prime}=\frac{2 x+1}{x^{2}+x-1}-\frac{4}{4 x-3} \\
\Longrightarrow y^{\prime}(1)=\frac{3}{1}-\frac{4}{1}=-1 .
\end{gathered}
$$

So the equation of the tangent line is

$$
y=y(1)+y^{\prime}(1)(x-1) \Longrightarrow y=-(x-1) \Longrightarrow y=1-x .
$$

Figure 1: Graph of $y=\ln \left(\frac{x^{2}+x-1}{4 x-3}\right)$ and its tangent line at (1, 0)

Logarithmic differentiation:

If $f(x)$ is any (differentiable) function, then

$$
\frac{d}{d x} \ln (f(x))=\frac{1}{f(x)} \cdot f^{\prime}(x)=\frac{f^{\prime}(x)}{f(x)} .
$$

This is called the logarithmic derivative of $f(x)$.
In some cases, it is easier to compute the $\frac{d}{d x} \ln (f(x))$ than it is to compute $f^{\prime}(x)$, because $\ln (f(x))$ is a simpler function than $f(x)$ itself.
We can take advantage of this to find $f^{\prime}(x)$ because

$$
f^{\prime}(x)=f(x) \cdot\left(\frac{d}{d x} \ln (f(x))\right)
$$

This is called logarithmic differentiation.
We will use this idea in the following special, but important case...

Differentiating the exponential function.

Observation: $\ln \left(e^{x}\right)=x$ which is a simpler function (to differentiate) than e^{x}. So we will use logarithmic differentiation to find $\frac{d}{d x} e^{x}$:

$$
\frac{d}{d x} e^{x}=e^{x} \cdot\left(\frac{d}{d x}\left(\ln \left(e^{x}\right)\right)\right)=e^{x} \cdot\left(\frac{d}{d x} x\right)=e^{x} \cdot 1=e^{x} .
$$

I.e.,

$$
\frac{d}{d x} e^{x}=e^{x}
$$

Example 5.

$$
\frac{d}{d x}\left(3 e^{x} x^{1 / 2}\right)=3 e^{x} x^{1 / 2}+3 e^{x} \cdot \frac{1}{2} x^{-1 / 2}=3 e^{x} x^{1 / 2}+\frac{3}{2} e^{x} x^{-1 / 2}
$$

product rule.
Example 6.

$$
\left(e^{x^{2}-3 x+1}\right)^{\prime}=e^{x^{2}-3 x+1}(2 x-3)
$$

chain rule

Example 7. Find the marginal revenue function for the firm whose demand equation is given by

$$
p=15 e^{2-0.05 q}
$$

First, find the revenue function

$$
r=p q=15 q e^{2-0.05 q}
$$

Now differentiate, using the product and chain rules:

$$
\frac{d r}{d q}=15 e^{2-0.05 q}+15 q e^{2-0.05 q}(-0.05)=(15-0.75 q) e^{2-0.05 q}
$$

The consumption function for a small country is given by

$$
C=\ln \left(\frac{e^{0.95 Y}}{e^{0.2 Y}+5}\right)
$$

where Y is national income, measured in \$billions.
(a) How much is consumed when $Y=10$?

$$
C(10)=\ln \left(\frac{e^{9.5}}{e^{2}+5}\right) \approx 6.983
$$

(b) What is the marginal propensity to consume when $Y=10$?

$$
\begin{aligned}
\frac{d C}{d Y} & =\frac{d}{d Y}\left(\ln \left(\frac{e^{0.95 Y}}{e^{0.2 Y}+5}\right)\right) \\
& =\frac{d}{d Y}\left(\ln \left(e^{0.95 Y}\right)-\ln \left(e^{0.2 Y}+5\right)\right) \\
& =\frac{d}{d Y}\left(0.95 Y-\ln \left(e^{0.2 Y}+5\right)\right)=0.95-\frac{0.2 e^{0.2 Y}}{e^{0.2 Y}+5} \\
\left.\frac{d C}{d Y}\right|_{Y=10} & =0.95-\frac{0.2 e^{2}}{e^{2}+5} \approx 0.8307
\end{aligned}
$$

(c) Compute the limit $\lim _{Y \rightarrow \infty} \frac{d C}{d Y}$, and interpret the result.

$$
\begin{aligned}
\lim _{Y \rightarrow \infty} \frac{d C}{d Y} & =\lim _{Y \rightarrow \infty}\left(0.95-\frac{0.2 e^{0.2 Y}}{e^{0.2 Y}+5}\right) \\
& =0.95-\lim _{Y \rightarrow \infty} \frac{0.2 e^{0.2 Y} \cdot e^{-0.2 Y}}{\left(e^{0.2 Y}+5\right) \cdot e^{-0.2 Y}} \\
& =0.95-\lim _{Y \rightarrow \infty} \frac{0.2}{1+5 e^{-0.2 Y}}=0.95-\frac{0.2}{1}=0.75
\end{aligned}
$$

Interpretation: When income grows large, the nation will tend to consume $\$ 0.75$ of each additional dollar of income.

