Definition:

If $f\left(x^{*}\right) \geq f(x)$ for all x in some interval $\left(x^{*}-a, x^{*}+a\right)$ around x^{*}, then $f\left(x^{*}\right)$ is called a relative maximum value or a local maximum value of the function $f(x)$.

Definition:

If $f\left(x^{*}\right) \leq f(x)$ for all x in some interval $\left(x^{*}-a, x^{*}+a\right)$ around x^{*}, then $f\left(x^{*}\right)$ is called a relative minimum value or a local minimum value of the function $f(x)$.

Observation: If $f\left(x^{*}\right)$ is a local maximum value, then $f(x)$ is increasing immediately to the left of x^{*} and $f(x)$ is decreasing immediately to the right of x^{*}.

Likewise, if $f\left(x^{*}\right)$ is a local minimum value, then $f(x)$ is decreasing immediately to the left of x^{*} and $f(x)$ is increasing immediately to the right of x^{*}.

Key observations:

1. If $f(x)$ is increasing in an interval (a, b) and f is differentiable there, then $f^{\prime}(x)>0$ in (a, b).
2. If $f(x)$ is decreasing in an interval (a, b) and f is differentiable there, then $f^{\prime}(x)<0$ in (a, b).
3. If $f(x)$ has a local minimum or maximum value at x^{*}, then the graph of $y=f(x)$ changes direction at x^{*}.
4. If $f(x)$ has a local minimum or maximum value at x^{*}, then $f^{\prime}(x)$ changes sign at x^{*}.

Conclusion: If $f\left(x^{*}\right)$ is a relative extreme value, then...
(i) $f^{\prime}\left(x^{*}\right)=0$ or
(ii) $f^{\prime}(x)$ is not defined at x^{*}.

Definition: If $f^{\prime}\left(x^{*}\right)=0$ or $f^{\prime}(x)$ is not defined at x^{*}, then x^{*} is called a critical point of the function $f(x)$ and $f\left(x^{*}\right)$ is called a critical value. All relative extreme values occur at critical points!

Example 1. Find the critical point(s) and critical value(s) of the function

$$
f(x)=\frac{1}{3} x^{3}-x^{2}-8 x+7
$$

First, differentiate:

$$
f^{\prime}(x)=x^{2}-2 x-8
$$

Observe that $f^{\prime}(x)$ is defined for all x, so we need only solve $f^{\prime}(x)=0$:

$$
f^{\prime}(x)=0 \Longrightarrow x^{2}-2 x-8=0 \Longrightarrow x=\frac{2 \pm \sqrt{4+32}}{2}
$$

There are two critical points, $x_{1}=-2$ and $x_{2}=4$, with corresponding critical values

$$
y_{1}=f(-2)=\frac{49}{3} \quad \text { and } \quad y_{2}=f(4)=-\frac{59}{3}
$$

Terminology: If x^{*} is a critical point of $f(x)$, then the point $\left(x^{*}, f\left(x^{*}\right)\right)$ is called a critical point on the graph of $y=f(x)$.

Graph of $f(x)=\frac{1}{3} x^{3}-x^{2}-8 x+7$, with critical points (blue diamonds).

Example 2. Find the critical point(s) and critical value(s) of the function

$$
w=3 t^{1 / 3} e^{-t^{2} / 24}
$$

Differentiate (and simplify!):

$$
\begin{aligned}
\frac{d w}{d t} & =t^{-2 / 3} e^{-t^{2} / 24}-\frac{1}{4} t^{4 / 3} e^{-t^{2} / 24} & & \text { product rule and chain rule } \\
& =e^{-t^{2} / 24}\left(\frac{1}{t^{2 / 3}}-\frac{t^{4 / 3}}{4}\right) & & \text { factor } \\
& =e^{-t^{2} / 24}\left(\frac{4-t^{2}}{4 t^{2 / 3}}\right) & & \text { common denominator }
\end{aligned}
$$

Analysis: $d w / d t$ is undefined when $t=0$ (because $4 \cdot 0^{2 / 3}=0$) and $d w / d t=0$ when $4-t^{2}=0$ (because $e^{u}>0$ for all real u).
Critical points: $t_{1}=-2, t_{2}=0$ and $t_{3}=2$.
Critical values: $w_{1}=3(-2)^{1 / 3} e^{-1 / 6} \approx-3.1995, \quad w_{2}=0$ and $w_{3}=3(2)^{1 / 3} e^{-1 / 6} \approx 3.1995$.

Graph of $w=3 t^{1 / 3} e^{-t^{2} / 24}$, with critical points (blue diamonds).

Question: Having found a critical point x^{*} of $f(x)$, how do we determine the nature of the critical value $f\left(x^{*}\right)$: local maximum, local minimum or neither?

Answer 1: We can use the first derivative test.
(Answer 2: We can use the second derivative test (later).)
The first derivative test is based on the basic observation that if $f^{\prime}(x)$ changes sign at the critical point x^{*}, then $f\left(x^{*}\right)$ is a local extreme value:

- If $f^{\prime}(x)>0$ to the left of x^{*} (increasing to the left) and $f^{\prime}(x)<0$ to the right of x^{*} (decreasing to the right), then $f\left(x^{*}\right)$ is a local maximum value.
- If $f^{\prime}(x)<0$ to the left of x^{*} (decreasing to the left) and $f^{\prime}(x)>0$ to the right of x^{*} (increasing to the right), then $f\left(x^{*}\right)$ is a local minimum value.

But... If $f^{\prime}(x)$ has the same sign on both sides of x^{*}, then $f\left(x^{*}\right)$ is neither a minimum nor a maximum value.

Question: How far to the left or right of the critical point(s) can we/should we check the sign of the derivative?

Answer: The derivative can only change sign at a critical point. This means that between two consecutive critical points the sign of the derivative is constant (either + or -).
So, to determine the sign of $f^{\prime}(x)$ to the left and to the right of a critical point x^{*}, we can 'test' $f^{\prime}(x)$ at any point between x^{*} and the next critical points to the left and right of x^{*}.
If there are no critical points to the left (right) of x^{*}, then we can test $f^{\prime}(x)$ at any point to the left (right) of x^{*}.

Example 1. (continued) The critical points of the function

$$
f(x)=\frac{1}{3} x^{3}-x^{2}-8 x+7
$$

are $x_{1}=-2$ and $x_{2}=4$. To determine the nature of $y_{1}=f(-2)=49 / 3$ and $y_{2}=f(4)=-59 / 3$, we sample $f^{\prime}(x)=x^{2}-2 x-8$ at

- ... any point to the left of $x_{1}=-2$;
- ... any point between x_{1} and $x_{2}=4$;
- ... any point to the right of x_{2}.

Thus, $f^{\prime}(-3)=7>0$ and $f^{\prime}(0)=-8<0$, so $f(-2)=49 / 3$ is a relative maximum value.

Likewise, $f^{\prime}(0)<0$ and $f^{\prime}(5)=7>0$, so $f(4)=-59 / 3$ is a relative minimum value.

Example 2. (continued) The critical points of

$$
w=3 t^{1 / 3} e^{-t^{2} / 24}
$$

are $t_{1}=-2, t_{2}=0$ and $t_{3}=2$. Also recall that $w^{\prime}=e^{-t^{2} / 24}\left(\frac{4-t^{2}}{4 t^{2 / 3}}\right)$
First derivative test:

- $w^{\prime}(-8)=-\frac{15}{4} e^{-8 / 3}<0$ and $w^{\prime}(-1)=\frac{3}{4} e^{-1 / 24}>0$, and therefore $w(-2) \approx-3.1995$ is a local minimum value.
- $w^{\prime}(-1)>0$ and $w^{\prime}(1)=\frac{3}{4} e^{-1 / 24}>0$, so $w(0)=0$ is neither a maximum nor a minimum value (the derivative did not change sign).
- $w^{\prime}(1)>0$ and $w^{\prime}(8)=-\frac{15}{4} e^{-8 / 3}<0$, so $w(2) \approx 3.1995$ is a local maximum value.

