Linear approximation for the function $f(x) = \sqrt{x}$ in the vicinity of the point $x_0 = 16$:

$$\sqrt{x} = f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$
$$= (16)^{1/2} + \frac{1}{2}(16)^{-1/2}(x - 16)$$
$$= 4 + \frac{1}{8}(x - 16) = T(x)$$

Observations:

1.
$$T(16) = 4 = \sqrt{16}$$
 and $T'(16) = \frac{1}{8} = \left. \frac{d}{dx} \left(\sqrt{x} \right) \right|_{x=16}$

- **2.** The approximation is fairly accurate when x is within 1 or 2 of 16.
- **3.** The approximation becomes increasingly less accurate as x moves away from 16 because...

4. ... the slope of $f(x) = \sqrt{x}$ is changing but the slope of T(x) is not.

To obtain a better approximation, we can try to find a quadratic function Q(x), satisfying

•
$$Q(16) = f(16) = \sqrt{16} = 4$$
,

•
$$Q'(16) = f'(16) = \frac{1}{2}(16)^{-1/2} = \frac{1}{8}$$
 and

•
$$Q''(16) = f''(16) = -\frac{1}{4}(16)^{-3/2} = -\frac{1}{256}$$

So that the slope of Q(x) will be changing at the same rate as the slope of $f(x) = \sqrt{x}$ at x = 16.

If we write $Q(x) = A + B(x - 16) + C(x - 16)^2$, we find that

•
$$Q(16) = A$$
, so $A = 4$.
• $Q'(x) = B + 2C(x - 16)$, so $Q'(16) = B$ and $B = \frac{1}{8}$.
• $Q''(x) = 2C$, so $2C = -\frac{1}{256}$, i.e., $C = -\frac{1}{512}$.
 $\implies Q(x) = 4 + \frac{1}{8}(x - 16) - \frac{1}{512}(x - 16)^2$.

Numerical comparisons:

x	\sqrt{x} (calculator value)	T(x)	Q(x)	$\left \sqrt{x}-Q(x)\right $
16	4	4	4	0
17	4.123105626	4.125	4.123046875	< 0.00006
15	3.872983346	3.875	3.873046875	< 0.000064
20	4.472135955	4.5	4.46875	< 0.0034
12	3.464101615	3.5	3.46875	< 0.0047
16.5	4.062019202	4.0625	4.062011719	< 0.0000075

Generalizing.

Given a differentiable function f(x) and a point $x_0 \dots$ If $x \approx x_0$, then

$$f(x) \approx T_1(x) = f(x_0) + f'(x_0)(x - x_0).$$

This is linear approximation, and the function $T_1(x)$ is the *linear* Taylor polynomial for f(x) centered at x_0 .

 $T_1(x)$ has the properties; (i) $T_1(x_0) = f(x_0)$ and (ii) $T'_1(x_0) = f'(x_0)$.

Intuition: If we can find a quadratic function $T_2(x)$ satisfying

$$T_2(x_0) = f(x_0), \quad T'_2(x_0) = f'(x_0) \text{ and } T''_2(x_0) = f''(x_0),$$

then $T_2(x)$ will provide a better approximation to f(x) than $T_1(x)$ does.

Definition: The *quadratic Taylor polynomial* for the function y = f(x), centered at x_0 , is the function

$$T_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2.$$

This function has the properties

• $T_2(x_0) = f(x_0)$

•
$$T'_2(x) = f'(x_0) + f''(x_0)(x - x_0)$$
, so $T'_2(x_0) = f'(x_0)$

•
$$T_2''(x) = f''(x_0)$$
, so $T_2''(x_0) = f''(x_0)$

Quadratic approximation:

Generally speaking, if $x \approx x_0$, then $T_2(x)$ gives a better approximation to f(x) than $T_1(x)$. **Example.** Find the quadratic Taylor polynomial for $f(x) = \sqrt{x}$, centered at $x_0 = 25$.

We need to find f(25), f'(25) and f''(25)...

$$f(x) = \sqrt{x} = x^{1/2} \implies f'(x) = \frac{1}{2}x^{-1/2} \text{ and } f''(x) = -\frac{1}{4}x^{-3/2},$$

so $f(25) = 25^{1/2} = 5$ and

$$f'(25) = \frac{1}{2}25^{-1/2} = \frac{1}{10}$$
 and $f''(25) = -\frac{1}{4}25^{-3/2} = -\frac{1}{500}$

Therefore, the quadratic Taylor polynomial for $f(x) = \sqrt{x}$, centered at $x_0 = 25$ is

$$T_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2$$
$$= 5 + \underbrace{\frac{1}{10}}_{f'(25)}(x - 25) - \underbrace{\frac{1}{1000}}_{f''(25)/2}(x - 25)^2$$

Figure 1: Quadratic approximation to $y = x^{1/2}$, centered at x = 25

Answer 2: Some numerical comparisons:

x	$T_2(x)$	\sqrt{x} (calculator)	$\left \sqrt{x} - T_2(x)\right $
25	5	5	0
24	4.899	4.898979	< 0.000021
26	5.099	$5.099019\ldots$	< 0.00002
23	4.796	$4.795831\ldots$	< 0.00017
27	5.196	$5.196152\ldots$	< 0.00016
20	4.475	$4.472135\ldots$	< 0.0029
30	5.475	5.477225	< 0.0023

To improve on quadratic approximation... Keep going.

The Taylor polynomial of degree n.

Given an *n*-times differentiable function f(x) and a point x_0 , the degree *n* Taylor polynomial for f(x) centered at $x = x_0$ is given by

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

Comments:

- **1.** $n! = n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 \cdot 1.$
- **2.** $T_{n+1}(x) = T_n(x) + \frac{f^{(n+1)}(x_0)}{(n+1)!}(x-x_0)^{n+1}$
- **3.** $T_n(x)$ has the property that $T_n(x_0) = f(x_0)$, and

$$T'_n(x_0) = f'(x_0), \ T''_n(x_0) = f''(x_0), \ \dots, \ T^{(n)}_n(x_0) = f^{(n)}(x_0).$$

4. The approximation $f(x) \approx T_n(x)$ is usually very accurate when x is close to x_0 , especially when $|x - x_0| < 1$.

Example. Find the cubic Taylor approximation, $T_3(x)$, for $f(x) = \sqrt{x}$, centered at $x_0 = 25$.

We already know that $T_2(x) = 5 + 0.1(x - 25) - 0.001(x - 25)^2$ and

$$\frac{d^3}{dx^3}\sqrt{x} = \frac{3}{8}x^{-5/2}$$

therefore

$$\left. \frac{d^3}{dx^3} \sqrt{x} \right|_{x=25} = \left. \frac{3}{8} x^{-5/2} \right|_{x=25} = \frac{3}{25000}$$

Furthermore 3! = 6, and (3/25000)/6 = 1/50000, so

$$T_3(x) = 5 + 0.1(x - 25) - 0.001(x - 25)^2 + \underbrace{0.00002}_{f'''(25)/3!} (x - 25)^3$$

Question: How well does the approximation $\sqrt{x} \approx T_3(x)$ do?

Answer: Better than the quadratic approximation, as illustrated in the graph below. The cubic polynomial (blue curve) is closer to the graph $y = \sqrt{x}$ (black curve) than the quadratic polynomial (red curve), and stays closer for longer.

This improvement is also shown in the short table below.

x	$T_2(x)$	$T_3(x)$	\sqrt{x} (calculator)	$\left \sqrt{x}-T_3(x)\right $
25	5	5	5	0
24	4.899	4.89898	4.898979	< 0.000000515
26	5.099	5.09902	$5.099019\ldots$	< 0.0000005
23	4.796	4.79584	$4.795831\ldots$	< 0.0000085
27	5.196	5.19616	$5.196152\ldots$	< 0.0000076